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J. Phys. A :  Math. Gen. 16 (1983) 2331-2345. Printed in Great Britain 

The Fronsdal massless equations for integer spin in 
Duffin-Kemmer form 

w cox  
Department of Mathematics, University of Aston in Birmingham, Gosta Green, Birming- 
ham B4 7ET, UK 

Received 27 October 1982, in final form 24 November 1982 

Abstract. The Fronsdal integer spin equations for zero mass are put into first-order 
Duffin-Kemmer form. The minimal polynomials of the coefficient matrices are determined 
and compared with the massive case. It is also noted that the various antisymmetric tensor 
gauge field theories of recent interest are included in  a general massless Duffin-Kemmer 
formalism of Harish-Chandra. 

1. Introductim 

There has been increasing interest in massless, high-spin field theories in  recent years, 
encouraged in part by the needs of extended supergravity (Fronsdal 1978, Christensen 
and Duff 1979, Fang and Fronsdal 1978, Berends et a1 1979, Berends and Van Reisen 
1980, Curtwright 1979, 1980, De Wit and Freedman 1980, Fronsdal and Hata 1980, 
Aragone 1981). A number of different tensor-spinor formulations of such field 
theories have been given and discussed, but perhaps the most commonly used form 
is that of Fang and Fronsdal (1978), which is essentially the massless limit of the 
general spin Fierz-Pauli equations as formulated by Singh and Hagen (1974). 

There has also been much interest in lower-spin (Sl) theories which use higher- 
rank tensors, particularly antisymmetric tensors, because of the occurrence of such 
tensor fields in extended supergravity theories (Hagen 1979, Sezgin and Van Nieuwen- 
huizen 1980, Aurilia and Takahashi 1981, Duff 1981, Deser and Witten 1981, Deser 
et a1 1981, Townsend 1981, Obhukhov 1982, Van Nieuwenhuizen 1982). Finally, 
there is the recent use of linear coupling of higher-rank gauge fields to generate 
massive field theories by the ‘gauge-mixing mechanism’ (Hagen 1979, Aurilia and 
Takahashi 1981, Govindarajan 1982). 

Despite repeated elTorts (Berends et al 1980, Aragone and Deser 1979, Aragone 
1981) no consistent interaction coupling has been achieved for massless fields for 
helicity greater than 2, and the suspicion has grown that no such coupling is possible. 
This may be, but high-spin massless theories have received comparatively little atten- 
tion compared with their massive counterparts, and further study of the available 
possibilities seems worthwhile. 

A useful general approach to the massive high-spin theory is to write the field 
equations in the so called Duffin-Kemmer matrix differential form: 

Lw$’+ i~ I$=O (1.1) 
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where L, are square matrices, ,y a real number, I a unit matrix and 4 a column vector 
of the field components (Kemmer 1939, Gel’fand et a1 1963, Takahashi 1969, Vel0 
and Zwanzinger 1971, Cox 1978, 1981). Such equations have the advantage that 
they are independent of the tensor-spinor form of the fields used to represent the 
various Lorentz group irreps in 4, and they allow a simple and systematic analysis of 
the mass-spin spectra by study of the eigenvalues of LO. 

In the massive case there are two distinct approaches to such equations as (1.11, 
by the study of the abstract tensor algebra generated by the L,; or by explicit 
construction of the L, matrices from the conditions of covariance, Lagrangian origin 
and mass-spin spectra, The prototype for the former approach is the original Duffin- 
Kemmer theory of spin 0 and 1, for which the L, algebra is given by 

L , L ” L P  +L,L”L, = g d p  +gp*L, (1.2) 

P=p*L,  

P(P2 - p 2 )  = 0. 

or, with 

By either approach, the important aspect of (1.1) is the minimal equation of LO, since 
it  is this which largely determines the mass-spin spectra and the complexity of the 
constraints in the theory. For higher spin and unique mass the algebra of the L, is 
much more complicated than (1.2). 

Despite the large amount of work done on the massive Duffin-Kemmer type of 
equation (1-1), there has been very little published on massless theories in a similar 
form. For such theories the scalar ‘mass matrix’ XI must be replaced by a singular 
matrix M, and the massive form (1.1) has to be rewritten slightly if it is to have a 
non-trivial massless limit. For example Harish-Chandra (1946) showed that the 
electromagnetic field equations could be written in the form 

(1.3) ip,d’$ + M+ = 0 

M*=M (1.4) 

MP,+P,M=@,. (1.5) 

where the p,, satisfy the Duffin-Kemmer algebra (1.2), and further 

It is easily verified that equation (1.3) is invariant under the gauge transformation 

4 + 4’ = 4 + (I - M)[ (1.6) 

where 6 is any solution of the equation 

ip, = 0. (1.7) 

This formulation of Harish-Chandra was extended independently by Okubo and Tosa 
(1979) to non-Abelian Yang-Mills theories, and also to Einstein gravity, although in 
the latter case they did not give the p algebra. 

It is interesting to note that Harish-Chandra (1946) proved that the theory of 
(1.31, (1.4) and (1.51, with the Duffin-Kemmer algebra (1.2), in fact includes a sequence 
of four massless gauge theories depending on the choice of p, representation and the 
choice of M. Thus Harish-Chandra showed that for each of the two non-trivial 
irreducible representations of the 6 ,  algebra, there are just two matrices, M and I - M, 
satisfying (1.4) and (1.5). In the ten-dimensional /3 representation, if one chooses M 
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to satisfy 

M = iP, (I - M)P 

then (1.3) is equivalent to the Maxwell equations for a vector field. Then replacing 
M by I-M in (1.3) yields a system equivalent to the gauge theory of a second-rank 
antisymmetric potential A,, : 

a,A”” = A ”  

a,A, -LA, = o 
with gauge invariance under 

SA’=O SA,” = EN”PaapAa  

(Deser and Witten 1981). For the five-dimensional P representation we take M to 
satisfy 

The resulting theory is equivalent to the gauge theory of a third-rank antisymmetric 
linear potential A,,,, which propagates no degrees of freedom (Townsend 1981). 
Replacing M by I - M in (1.3) gives the usual massless scalar theory. Thus, considered 
algebraically, the system (1.2) to (1.5) provides a succinct unified treatment of the 
complete set of antisymmetric linear gauge theories which have been studied recently. 

There have been other attempts to reformulate specific massless theories in the 
typical form (1.3) with or without (1.4) and (1.5), but these are mainly limited to spin 
$ (Sen Gupta 1967, Santhanam and Chandrasekaran 1969, Samiullah and Mansour 
1981) or spin 2 (Brulin and Hjalmars 1964). The only attempt at a general study of 
equations of the type (1.3) seems to have been in the unpublished thesis of Kwoh 
(1970), who gave sufficient conditions for such an equation to have massless (and 
massive) solutions and used these to obtain a theory describing a scalar field having 
both massless and massive modes (Kwoh 1970). Massive Duffin-Kemmer-type- 
theories with a singular mass matrix have received very little study. Theories obtained 
by the gauge-mixing mechanism of Aurilia and Takahashi (1981) are of this type. 

In this paper we study some of the properties of massless theories in Duffin- 
Kemmer form. In particular we reformulate the massless Fronsdal equations for 
integer spin in the Duffin-Kemmer-type form (1.3), and derive the minimal polynomial 
of the PO matrix. The result is a generalisation of the Harish-Chandra theory in the 
sense that the relations (1.4) and (1.5) are satisfied, but the algebra of the massless 
theory is more complicated than that of the corresponding massive theory. The method 
we use is to write the Singh-Hagen equation in first-order form in such a way that 
the massless limit may be taken in a straightforward way, and to arrive at the Fronsdal 
equations via this limit. The minimal polynomial of Po for the Singh-Hagen equations 
is known, and is used to deduce that of the Fronsdal equations. 

In 3: 2 we review the general theory of massive and massless Duffin-Kemmer-type 
equations and in B 3 derive the minimal polynomials for the Fronsdal equations. 

M=;P,(I-M)~”. 

2. Massive and massless first-order equations 

Consider a system of manifestly Lorentz covariant first-order field equations, describ- 
ing a field with arbitrary mass-spin spectra, which may include massive or massless 
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modes, or both. Any system of higher-order equations can always be written in this 
form, by introduction of a sufficient number of new variables. The most general matrix 
form of such a system can be written 

(r,a” + iYU)(I, = 0 (2.1) 

where r,, YU are matrices, and (I, a column vector representing the fields. Now r” 
and YU do not necessarily have to be square, particularly in the case of massless 
theories. However, if the equations are to derive from a real Lagrangian then it is 
desirable that the equations transform in the same way as the fields, and so we will 
take the f,, YU to be square, regardless of the mass-spin spectra. 

We assume that the field (I, lies in the respresentation space 92 of a (reducible) 
representation of the proper Lorentz group (Tp) and under Lorentz transformations 
transforms according to 

x, +x,’=a’lJ” (I, -+ (I,’ = (I,’(x’) = T,(I,(x). (2.2) 

We assume that the representation space 3 is fully reducible with respect to Tp, so 
that (I, can be written as a direct sum of components transforming irreducibly under 
Tp. Manifest covariance of (2.1) under the transformation (2.2) demands that the 
r,, YU matrices satisfy 

( 2 . 3 ~ )  

(2.3b) 

If we further require that (2.1) come from a real invariant Lagrangian, then there 
must exist an invariant hermitising matrix A such that 

T A T = A  

r;n = Ar, 

YU’A = AM,  

( 2 . 4 ~ )  

(2.46) 

( 2 . 4 ~  

Then (2.1) can be obtained from the Lagrangian 

L =  i-’$’A(r,a” + i d ) $  (2.5) 

by varying (I, or 4’ independently. Note that for the existence of a non-degenerate 
A i t  is necessary that (I, be a self-conjugate representation of Tp, which we henceforth 
assume (Gel’Fand et a1 1963). 

Two distinct types of theories now arise, depending on whether A’ is non-singular 
or singular. In the first case only massive states may occur, while the latter will 
accommodate massless and massive modes. Although we are mainly concerned with 
massless theories we will need first to review the massive case. 

2.1. YU non-singular 

In this case we can always multiply through by x K 1 ,  x a real number, and put 
L, = X K ’ r , ,  q = f ’ A l  and consider the equation in  the form 

(Lea” +ixI)t,b = 0 (2.6) 



The Fronsdal massless equations 2335 

where, from (2.3) and (2.4), q is Hermitian and 

T-*L,T = a,, "L, ( 2 . 7 ~ )  

q L: = L,q. (2.76) 

The theory of equations (2.6) and (2.7) is thoroughly understood (Gel'Fand er a1 
1963, Cox 1978, 1981) and we summarise only the points we will need. 

If we look for solutions to (2.6) of the form cc/ = 4 e"'", we obtain 

( P L + X I ) 4  = 0 (2.8) 

for which non-trivial solutions exist only if 

lpL+xll= 0 ,  (2.9) 

that is if the non-zero number x is an eigenvalue of the matrix P=pL.  Relativistic 
covariance implies that the eigenvalues of P are either zero or homogeneous functions 
in p 2  (Bhabha 1949, Udgaonkar 1952) from which it follows that p 2  = 0 cannot be a 
root of (2.9) and so theories for which is non-singular cannot describe massless 
particles. 

For massive fields we may use a similarity transformation with T to convert (2.8) 
to rest-frame form 

C-poLI+xI)4 = o  
from which we see that the rest-mass values are given by p o = x / h  where A is a 
non-zero eigenvalue of b. Further, once L,, is known, the L, can be obtained from a 
Lorentz transformation. 

As is well known (Gel'Fand er a1 1963), Lo commutes with the generator of space 
rotations and so may be partitioned into block-diagonal form by arranging all basis 
vectors in 9 with the same total spin together into the so-called spin blocks (Gel'Fand 
er a/ 1963, Cox 1974). The 'elements' of the r block are ( 2 r + l ) x ( 2 r + l )  scalar 
matrices and so will be treated as numbers. This being understood, the dimension of 
the r block is determined by the number of Lorentz irreps in 9 which contain spin r. 
Suppose the irreps T ~ ,  T ~ ,  . . . . , T, occur in the r block Lb". Then the ij element of 
L;' is non-zero only if the irreps T ,  - (k , ,  l , ) ,  T,  - (k, ,  1,) are linked, that is 

1 k, = k ,  *+ I ,  = I ,  f 3. 

At most four different irreps can be linked to any given irrep 7,. This linkage property 
motivates a useful graphical representation of the r blocks, or indeed the complete 
La of the theory (Cox 1974, 1978, 1981) in which the Lorentz irreps of the theory 
are taken as vertices and the non-zero elements of the s blocks (or Lo) as the directed 
edges of the graph, connecting appropriate vertices. Particularly, if the ZP irreps each 
occur only once, the result is a planar linear graph of very simple structure. 

A non-zero eigenvalue A of Lb" corresponds to a field mode with mass ,y/A and 
total spin r .  So the eigenvalue spectra of the L;' are very important, and graphical 
methods have been developed to assist in the study of these (Cox 1974, 1978, 1981). 
The elements of L:' are of the general form p ( k , ,  I , ,  r)CTrTi where CTtTl is a complex 
parameter. The requirements of (2.7b) and of space reflection covariance relate CTITi, 
CTS': and C':': to CTiTi (T: denotes the conjugate representation to T , ) ,  and further 
restrictions on the CTPTi result from any mass-spin spectra imposed. For a theory 
based on (2.6) and (2.7) describing a particle-antiparticle field with unique mass ,y 
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and unique spin s, we require the s block L;' to have eigenvalues 0, rtl, and a minimal 
polynomial of the form 

m ( ~ )  = A ~ ' ( A ~  - 1) 

while all other blocks, L:', have to be nilpotent: 

(Lb")41 = 0 j f s .  

Unfortunately, widely studied though it is, the massive form (2.6) is not suitable 
for our present purposes, because it does not have a non-trivial massless (x + 0) limit. 
On putting x = 0 we obtain the completely covariantly reducible system 

La4 = o 
which splits up into a number of separately covariant systems of equations. As we 
shall see for the Fronsdal massless equations, to express the massive theory in a form 
suitable for taking the massless limit we must utilise the original form (2.5) in which 
1 is non-singular, but is not a scalar matrix. Fortunately, we find that in the case of 
the  Singh-Hagen equations this can be done without destroying the simple form of 
the LO algebra of this theory. 

2.2. 1 singular (but non-zero) 

In this case we have to deal with (2.11, (2.3) and (2.4). From (2.31, 1 commutes with 
the representation matrix T, and as this is a direct sum of Lorentz irreps, 1 can be 
written in the block-diagonal form 

where xi is a scalar matrix corresponding to the L?p irrep T ~ ,  all other entries being 
zero. Some of the xi will also be zero, and the rest can all be rescaled to uni ty  without 
loss of generality, so that d can be rearranged covariantly in the form 

d = M = [  0 0  ] 
0 1  

satisfying M2 = M. 
It is important to note that in general there is no a priori relation between r w  and 

M. Further, the nice connection between mass-spin spectra and the rw algebra is 
now weakened considerably and requires reappraisal. We can derive some general 
points from (2.11, (2.3) and (2.4).  For example, since the charge density of the 
Lagrangian density, (2.51, is proportional to (LT M4, physical states cannot lie in the 
kernel of M because such states would not contribute to the charge density. If we 
assume a plane-wave solution 4 = 4eipx to (2.1) we obtain (with 1 = M) 

(rp  MI^ = 0. 

For solutions with time-like p w  we may transform to a rest frame and reduce the 
problem to the form 

C-C p o  + MI4 = 0. 
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If there are any non-trivial solutions to this equation then these would represent 
massive field modes. For massless states (light-like p , )  we cannot go to a rest frame 
and can at best choose some light-like p,,, say (0, 0, pol p o )  and consider the problem 

[ p o r 3  - ro) + M M  = 0. 

Massless states will only exist if this has a non-trivial solution. We can say little more 
without being more specific about the forms of r,, and M, and so we now turn to the 
example provided by the Fronsdal equations for integer spin. 

3. The Fronsdal massless equations for integer spin 

The Fronsdal equations are obtained by putting m 2  = 0 in the Singh-Hagen equations 
for arbitrary spin, massive fields (Singh and Hagen 1974). For spin s > 3 the Singh- 
Hagen equations in first-order form involve two sets of tensor fields, c$F,!,,,,~, p = 0, 
1, 2, . . , , (s -2), s, which are symmetric and traceless and H~l!.,,p--l.,a ( p  = s, s -2, 
s - 3, . , . ,2 ) ,  H::, H;", H, having the following properties. 

(i) H ~ l ~ . , , ~ ~ - I , , a  is antisymmetric in CL and a and symmetric traceless in the remain- 
ing indices. 

(ii) E * l w a P H i P l  

(iii) g r r w l ~ c s - 2 1  

4 i P )  
,,...,p - gab, fp), 

, * . . . ,p - , , , ,m  = 0, P = s, (s - 31, . . . , 2. 
, , . . . , , -3. ,a = 0. 

The Lorentz irreps involved are 

p = (0 ,1,2,  * * . , (s - l ) ,  s) 

HE~,,,,,-l,,,a - 9 [ f ( s  + l ) ,  $(s - l)]09[$(~ - 11, h + 1 ) ] 0 9 [ f ( s  - 11, $ ( s  - 111 

H f , ~ , 2 ~ , _ 3 . , a  -9[$ - 1, B ( s  - 3 ) ] 0 9 [ $ ( ~  - 31, fb - I ) ]  

p = 0, 1 ,2 ,  * . * (s -4)  H,, l . . , ,p- l , ,a  ( P I  -9(1 +kp, f p ) C D 9 ( h  1 +ip)CD9a(h 
HFI - 9(i, i) 
(HFl and H are included together under the case p = 0). 

The notation {TF,:,.,JsT will be used to denote the symmetric traceless part of a 
tensor, while {TFl!,.,,,,p}A denotes that part satisfying the conditions (i) and (ii) above. 
With these notations and conventions, the Singh-Hagen massive equations are 

Hul...Fr-I.fia = 2{aa4w,l...+s-I + (S - 1)aga,,(a4's')~,2...,~-1 + (S - 1)2k,,laa4:",2Ls-, )A 
I s )  (SI 

( 3 . 1 ~ )  

f f E L . 2 L s - 3 , f i a  = 2{aa4 f;;!,p-3}~ (3.16) 
(s-qI HII1...w,,-q-I,.,,a = 2 { a a 4 ~ ~ ~ ! , , , ~ 9 - q - 1 ,  +(s - 4  - l)~qga,,(a4'"-"'),,, . . . , , ~ -q - i l }A  

3 ~ 9  G (S - 2 )  ( 3 . 1 ~ )  

(3 . ld )  

( 3 . 2 ~ )  

IO1 H =&#,"I H h"' = a-4 (11 ~ l ' d .  =aa4,, -a,4h" 

{aaHf ; . . .W, , - , , .~ ,a  + ~ ~ , , f i f ; . . . , , l S T - X  4fi1.,.fis = 0 

[1 +a(s  + 111- a ~ w I . . . f i , ~ - Z p  -[(s - 2 ) / ( 2 ~  - 1 ) I { a a ~ : " , . 2 : , . _ 3 , , , , ~ - ~ , a  }ST 

2 I s 1  

1 a - 1 s )  

(3.26) 2 is-21 
-a2x 4,,...,,,-,, +~c~{a,,41',.31,,.,,}~~=0 
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(3.2e) 

where 
- ( P I  H ,  I . . .  up - 1 = g ""H:qi..,, D - 2 , . Y , ,  D ~ 1 ,. 

The precise forms of the coefficients a, 6, c, efc, do not concern us here. 

a factor i we can rewrite the above systems in the matrix form 
Dividing through by the coefficients up of the 4'') in equations (3.2) and inserting 

(r,a" +i.M)G = 0 (3.3) 

where 

(3.4) 

in obvious notation. 
We cannot convert this system to one of the form (2.6) because the result would 

not have a non-singular x + 0 limit. We must, therefore, work with the form (3.3). 
But then we have to determine the f, algebra and rework the theory of the Singh- 
Hagen equations already done in the form (2.6) (Cox 1978). 

Converting to the form (2.6) by putting 

L, =x.x-'r, =x-lr,.Ay (3.5) 

we have, if q is even, 

L; = r; 

L; = 

r;(r;- 1) = o 

and if q is odd 

These results imply that, so long as x f 0 r, satisfies 

if and only if L, satisfies the same equation: 

The same argument may be repeated, in particular for the individual s blocks rg' 
(To and UU both commute with the rotation group operator and by inspection may be 
simultaneously partitioned into s blocks in the same manner as (3.4)). Thus the s 
blocks of ro obey the same algebra as those of Lo, and if we determine Lo to satisfy 
the conditions for a unique mass, x, spin-s field then To will likewise satisfy the same 
conditions. So we can use the results obtained by the standard theory of (2.6) for the 
Singh-Hagen equations and yet still retain the form (2.1) for taking the x + O  limit. 
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The graph for Lo for the integer spin, s, Singh-Hagen equations was given by Cox 
(1981). The s block has to satisfy 

L ; ) ( L ~ ) ~  - 1 j = 0 

as minimal polynomial, while all the other blocks are nilpotent, the maximum degree 
of nilpotency being (from the 1 block) 2s - 1. From what has been said above, the ro 
spin blocks satisfy the same conditions. 

To obtain the Fronsdal equations we now put x = 0 in (3.2) and (3.3). We observe 
that in this process the fields 4;; ,+, p = (s  -3),  (s -4),  . . . , 0 ,  and H'", p = 
(s -3),  . . , , 0, decouple from the equations and may henceforth be ignored, only the 
fields 4"),  c$ ( ' -~ ' ,  His ) ,  H i s - * )  remaining, the field equations being 

I C 1  HI':' ,.-1,CIa = 2{aa4,,1 ,Lla-l, + ( s  - 1)ugu,l(a~(s1),,2 ,,-1 +(s - 1)2bg,,,aa~1";2~,, ,,L 
( 3 . 6 ~ )  

(3.66) 

(3.7a) 

(3.76) 

The second-order massless equations of Fronsdal result by eliminating ', H'"' 

from these equations. Retaining the above first-order form we can represent the 
system as 

( P , P  +iMG = 0 (3.8) 
where 

(3.9) 

Wenotice thatthep, andMsatisfyequation (1.5jofthe Harish-Chandrafirst-order form 
of the Maxwell theory. Also, (3.8) is invariant under a generalised form of the gauge 
transformation (1.6) and (1.7). Thus, the Fronsdalequationsare the natural extension, to 
high spin, of the Harish-Chandra massless theory except, of course, as we shall see, that 
the p algebra is more complicated. Further, while the same p algebra serves for both the 
massive and corresponding massless theory (that is the Duffin-Kemmer algebra (1.2)) in 
the case of spin 1, this is not the case for higher spin. Also note that (1.5) is not a surprising 
result-it reflects the general form of the system of equations 

(3.10) 

which with H regarded as the gauge field and 4 as the potential, can be viewed as 
an obvious generalisation of the Maxwell equations. The graph of Po is given in 
figure 1. 

Now in the massive form (3.3), the only terms in r, containing ,y are, from (3.2j, 
those corresponding to edges linking c $ " - ~ ' ,  4'c-41,. . . ,4'" to other irreps, and we 
know that all of these fields decouple from the theory. Thus the s, (s - 1) and (s -2) 
blocks of Po are the same as those of To for the massive theory, while lower-spin 
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blocks all have the same graphical form as Pg-2 '  (and rg-"), but with different 
elements. The s block decomposi:ion of the massless theory (3.3) and (3.4) is thus 
given in figure 2. 

For the first three blocks (spin s, (s  - 1, (s  -211, the minimal polynomials must be 
identical to those of the corresponding r k ' ,  since these do not change. Thus 

( 3 . 1 1 ~ )  

(3.11b) 

( 3 . 1 1 ~ )  

(these results are obtained directly from the graphs by the techniques outlined by 
Cox 1981). The remaining blocks of PO are no longer nilpotent in general, unlike the 
corresponding rO spin blocks. To calculate the minimal polynomials for these blocks 
we need the appropriate matrix elements. These could be obtained by inspection and 
rearrangement of equations (3.6) and (3.7), but this is impracticable and unnecessary. 
We can instead use the standard results of Gel'Fand ef uf (1963) (also Cox 1974) 
to write down the general form of the elements for any relativistic and space reflection 
covariant theory derivable from a Lagrangian, with a graph as in figure 3 and use 
(3.11) to write down equations for these elements. It turns out that the equations 
(3.11) actually essentially determine uniquely the elements for all s blocks, the minimal 
polynomials of which may then be written down directly. 

Figure 2. The 5 block decomposition of the massless theory ( 3 . 3 )  and (3.4).  
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Figure 3. Uses the standard results of Gel‘fand e t  al (also Cox) to write down the general 
form of the elements for any relativistic and space reflection covariant theory derivable 
from a Lagrangian with such a graph. 

The graphs for the s, (s - 1) and (s  -2) blocks are given below, in figures 4, 5 and 
6, with the corresponding matrix elements indicated, in the canonical representation 
(generator of rotations about z axis diagonal) of Gel’Fand er a1 (1963) and Cox (1974). 
The notation is 

(3.12) p ! s ,  r )  = I[CS + r + INS - r)l1”I 

sjj = *l qj = *l. 

The Cji are arbitrary complex numbers. The blocks correspond to the most general 
Lorentz and space reflection covariant theories derivable from a real invariant 
Lagrangian. They therefore include the Fronsdal equations as the massless limit of 
the Singh-Hagen equations. 

The conditions (3.11) for these s blocks yield, from direct inspection of the graphs, 
the following conditions for the coefficients of the characteristic polynomials: 

2p2(s, -1)q6s56/C56l2 = 1 (3.13a) 

2p2(s - 1, -1)q6s561C5612fs46P2(S - 1, s)lc46/2 = 0 (3.136) 

2p2(s -2, -l)~6s56/c561z+p2(s -29 s)s46(c4612+p2(s -2,  s - 1)s241c2412 

+2p2(s - 2, -l)q2s121CJ = 0 ( 3 . 1 3 ~ )  

2p2(s -2, -1)q6s561c56/2[2p2(s -2, -1)~2s121c1212+p2(s -27 s - 1)s241c2412] 

+2p2(s -2, -1)~2s121c1212p2(s -2 ,  s)s46/c46/2=o. (3.13d) 

L 

Figure 5. Graph for the ( s  - 1) block. 
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Figure 6.  Graph for the (s  - 2 )  block 

The first two equations yield 

q6s56 = 1,  s46=-1, 2p2(s, -1)/C56l2 = 1 

lC46l2 = [ p ( s  - 1,  -l)/p(s, -1)p(s - 1, s)12 

and the last two determine IC12l2 and IcZ4l2 in terms of IC46l2 and lC56l2. So the 
parameters Cii are determined, up to arbitrary phases, by the conditions on the s, 
(s - 1)  and (s - 2) blocks. 

The (s - r )  block, r s s - 1,  has the general form shown in figure 7, and again direct 
inspection of the graph yields the minimal polynomial 

with the notation 

Note that the degree of nilpotency for these blocks is indeed one because from 
the graph the rank of each block is four (Cox 1981) and there are four non-zero 
eigenvalues, since in general Cy' f 0, so the Jordan normal form of the zero eigenspace 
of each block must be the zero matrix. 
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t' 

Finally, the zero block is given in figure 8, with minimal polynomial 

m (A  ) = A [A * - ( j !$ +if: ) ] .  (3.15) 

Collecting the above results we find for the minimal polynomial of P o :  
5 - 1  

~i3~ : -  1) n [~40-(2j : ;1 +jk'$ +jij +2j:;')p: 
r = 3  

+2jV,(2jYi + j i j ) + 2 j Y ~ j ~ , ] [ ~ ~ - ( j ~ ~  +j:14))] = 0. (3.16) 

L2 
Figure 8. Graph of the zero block 
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Covariantising and contracting with an appropriate number of pG, we find the 
operator P = pp satisfies the minimal equation 

p5(pZ - 1) n {p4 - (2j:'Q + ji;Q + j y j  + 2jYi ) p 2 P  
( s - 1 )  

r = 3  

(3.17) 

This is to be compared with the much simpler result for the corresponding spin-s 
massive theory : 

p'zC-l,(pz - p z )  = 0, (3.18) 

While (3.17) is more complicated than (3.18), it in fact reflects a simpler structure for 
the po matrix. In the massive case (3.18) all spin blocks except the s block are nilpotent 
and non-diagonalisable. For massive theories this is essentially a requirement of 
positivity for high-spin theories (Gel'Fand et a f  1963). In the massless case (3.17), 
however, all spin blocks are diagonalisable except the (s  - 1) and (s - 2) blocks, which 
are maximally nilpotent. Unfortunately, in the massless case there seems no direct 
connection between the p algebra and the mass-helicity spectrum. Whereas in the 
massive case one can achieve any required mass-spin spectra by appropriately 
selecting s blocks as nilpotent or having non-zero eigenvalues, when the mass matrix 
M is singular this procedure is no longer valid. 

+(2j:'Q(2j:;' +i: .a)+2j12j46)p4}[P2-( jkse ( r )  ( r )  + j : ' a )p2 ]  = 0. 

4. Conclusions 

A great deal of work has been done on the theory of high-spin massive field equations 
written in the first-order Duffin-Kemmer form: 

(L,# +ixl)G = 0, (4.1) 
the emphasis being on the algebraic properties of the I,, matrices. However, very 
little i s  known about the analogous form for massless theories, which have mainly 
been studied in the conventional tensor-spinor form. In the massless case equation 
(4.1) must be replaced by an equation 

(4.2) 

where M is a singular matrix. The great value of the form (4.1) is the connection 
between the eigenvalue of Lo and the mass-spin spectra. This connection is not 
preserved in the massless form (4.21, and nothing is known about the algebraic 
properties of the p,. In this paper we have converted the high integer spin massless 
theory of Fronsdal to the form (4.2) and derived the form of the /3 algebra by calculating 
the minimal polynomials of the Po s blocks from known results for the massive 
Singh-Hagen theory. The resulting first-order theory is, apart from the p algebra, a 
direct generalisation of the Harish-Chandra massless theory for -pin 1. For higher 
spin the p algebra differs markedly from the corresponding massive algebra. We have 
also noted that, as anticipated by Harish-Chandra, the range of antisymmetric tensor 
gauge field theories of recent interest can all be derived in a unified treatment from 
the Duffin-Kemmer equation with a singular mass matrix. 

The advantage of (4.1) in the massive case is that it enables all covariant theories 
with a required mass-spin spectra to be studied systematically. In the conventional 
tensor-spinor formulation it is not easy to write down, ab initio, all possible theories 

(@,a" + iM)$ = 0 
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with a required mass-spin spectra. The irreps involved and the connectivities between 
these required to yield the spectra desired are perhaps best seen using the s-block 
analysis of the Lo in the first instance and then converting to tensor form to supply 
the details (Cox 1982a, b). It was hoped that a greater understanding of the form 
(4.2) for massless theories might lead to similar benefits for massless equations, and 
further, by appropriate choice of p,, M, it might be possible to obtain theories with 
any required spectra, including massive and massless particles, (Kwoh 1970). 
However, the complicated results for the p algebra of the massless Fronsdal equations 
are not encouraging in this respect. 
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